Characterization of the best non-symmetric approximant in spaces with mixed integral metric
نویسندگان
چکیده
The criterion of the best non-symmetric approximant for functions many variables in spaces with mixed integral metric is obtained.
منابع مشابه
Non-Archimedean fuzzy metric spaces and Best proximity point theorems
In this paper, we introduce some new classes of proximal contraction mappings and establish best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...
متن کاملOptimal coincidence best approximation solution in non-Archimedean Fuzzy Metric Spaces
In this paper, we introduce the concept of best proximal contraction theorems in non-Archimedean fuzzy metric space for two mappings and prove some proximal theorems. As a consequence, it provides the existence of an optimal approximate solution to some equations which contains no solution. The obtained results extend further the recently development proximal contractions in non-Archimedean fuz...
متن کاملBest Proximity Point Result for New Type of Contractions in Metric Spaces with a Graph
In this paper, we introduce a new type of graph contraction using a special class of functions and give a best proximity point theorem for this contraction in complete metric spaces endowed with a graph under two different conditions. We then support our main theorem by a non-trivial example and give some consequences of best proximity point of it for usual graphs.
متن کاملBest Approximation in Metric Spaces
A metric space (X, d) is called an M-space if for every x and y in X and for every r 6 [0, A] we have B[x, r] Cl B[y, A — r] = {2} for some z € X, where A = d(x, y). It is the object of this paper to study M-spaces in terms of proximinality properties of certain sets. 0. Introduction. Let (X, d) be a metric space, and G be a closed subset of X. For x E X, let p(x,G) = inf{d(x, y) : y E G}. If t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ?????????? ?? ???????????
سال: 2021
ISSN: ['2664-5009', '2664-4991']
DOI: https://doi.org/10.15421/240902